Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast

Abstract

Author Summary Identification of transcription factor binding sites based on sequence motifs is typically accompanied by a high false positive rate. Increasing evidence suggests that there are many other factors besides DNA sequence that may affect the binding and interaction of TFs with DNA. Through the integration of sequence motif, chromatin state, and DNA structure properties, we show that TF binding can be better predicted. Moreover, considering chromatin state and DNA structure properties simultaneously yields a significant improvement. While the binding of some TFs can be readily predicted using either chromatin state information or DNA structure, other TFs need both. Thus, our findings provide insights on how different histone modifications and DNA structure properties may influence the binding of a particular TF and thus how TFs regulate gene expression. These features are referred to as sequence “intrinsic properties” because they can be predicted from sequences alone. These intrinsic properties can be used to build a TF binding prediction model that has a similar performance to considering all features. Moreover, the intrinsic property model allows TFBS predictions not only across TFs, but also across DNA-binding domain families that are present in most eukaryotes, suggesting that the model likely can be used across species.

Publication
PLOS Computational Biology
Huai-Kuang Tsai
Huai-Kuang Tsai
Research Fellow/Professor